Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(36): 15214-8, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706484

RESUMO

Small-angle X-ray scattering (SAXS) is used to demonstrate the presence of density fluctuations in ambient water on a physical length-scale of approximately 1 nm; this is retained with decreasing temperature while the magnitude is enhanced. In contrast, the magnitude of fluctuations in a normal liquid, such as CCl(4), exhibits no enhancement with decreasing temperature, as is also the case for water from molecular dynamics simulations under ambient conditions. Based on X-ray emission spectroscopy and X-ray Raman scattering data we propose that the density difference contrast in SAXS is due to fluctuations between tetrahedral-like and hydrogen-bond distorted structures related to, respectively, low and high density water. We combine our experimental observations to propose a model of water as a temperature-dependent, fluctuating equilibrium between the two types of local structures driven by incommensurate requirements for minimizing enthalpy (strong near-tetrahedral hydrogen-bonds) and maximizing entropy (nondirectional H-bonds and disorder). The present results provide experimental evidence that the extreme differences anticipated in the hydrogen-bonding environment in the deeply supercooled regime surprisingly remain in bulk water even at conditions ranging from ambient up to close to the boiling point.


Assuntos
Conformação Molecular , Água/química , Ligação de Hidrogênio , Modelos Químicos , Espectrometria por Raios X , Temperatura
2.
J Chem Phys ; 123(5): 054310, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16108642

RESUMO

(H2O)(N) clusters generated in a supersonic expansion source with N approximately 1000 were core ionized by synchrotron radiation, giving rise to core-level photoelectron and Auger electron spectra (AES), free from charging effects. The AES is interpreted as being intermediate between the molecular and solid water spectra showing broadened bands as well as a significant shoulder at high kinetic energy. Qualitative considerations as well as ab initio calculations explain this shoulder to be due to delocalized final states in which the two valence holes are mostly located at different water molecules. The ab initio calculations show that valence hole configurations with both valence holes at the core-ionized water molecule are admixed to these final states and give rise to their intensity in the AES. Density-functional investigations of model systems for the doubly ionized final states--the water dimer and a 20-molecule water cluster--were performed to analyze the localization of the two valence holes in the electronic ground states. Whereas these holes are preferentially located at the same water molecule in the dimer, they are delocalized in the cluster showing a preference of the holes for surface molecules. The calculated double-ionization potential of the cluster (22.1 eV) is in reasonable agreement with the low-energy limit of the delocalized hole shoulder in the AES.

4.
Science ; 304(5673): 995-9, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15060287

RESUMO

X-ray absorption spectroscopy and x-ray Raman scattering were used to probe the molecular arrangement in the first coordination shell of liquid water. The local structure is characterized by comparison with bulk and surface of ordinary hexagonal ice Ih and with calculated spectra. Most molecules in liquid water are in two hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond in contrast to the four hydrogen-bonded tetrahedral structure in ice. Upon heating from 25 degrees C to 90 degrees C, 5 to 10% of the molecules change from tetrahedral environments to two hydrogen-bonded configurations. Our findings are consistent with neutron and x-ray diffraction data, and combining the results sets a strong limit for possible local structure distributions in liquid water. Serious discrepancies with structures based on current molecular dynamics simulations are observed.


Assuntos
Água/química , Fenômenos Químicos , Físico-Química , Simulação por Computador , Ligação de Hidrogênio , Gelo , Modelos Químicos , Estrutura Molecular , Análise Espectral , Análise Espectral Raman , Temperatura
5.
J Synchrotron Radiat ; 8(Pt 2): 136-40, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11512711

RESUMO

A closely integrated theoretical and experimental effort to understand chemical bonding using X-ray spectroscopic probes is presented. Theoretical techniques to simulate XAS (X-ray absorption spectroscopy), XES (X-ray emission spectroscopy), RIXS (resonant inelastic X-ray scattering) and XPS (X-ray photoelectron spectroscopy) spectra have been developed and implemented within a density functional theory (DFT) framework. In combination with new experimental techniques, such as high-resolution XAS on liquid water under ambient conditions and XES on complicated surface adsorbates, new insight into e.g. hydrogen-bonded systems is obtained. For the (3x2) overlayer structure of glycine/Cu(110), earlier work has been extended to include adsorbate-adsorbate interactions. Structures are optimized for large cluster models and for periodic boundary conditions. It is found that specific features in the spectra arise from hydrogen-bonding interactions, which thus have important effects at the molecular-orbital level. XAS on liquid water shows a pronounced pre-edge feature with significant intensity, while the spectrum of ice shows only little intensity in this region. Theoretical spectrum calculations, based on instantaneous structures obtained from molecular-dynamics (MD) simulations, show that the pre-edge feature in the liquid is caused by water molecules with unsaturated hydrogen bonding. Some aspects of the theoretical simulations will be briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...